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cretization are described in Section III and in Section IV a 
Discretization of the HartreeFock equations in operational form robust multigrid cycle is presented as a linear equation 

leads to unsymmetric positive definite and indefinite linear equations. 
To solve these equations a combination of the multigrid method and the 

solver. In Section V computational details and results from 

Orthomin method with Gauss-Seidel relaxation as preconditioner is 
both atomic and diatomic calculations are presented. 

used. The differential equations are approximated to the sixth order and Section VI, finally, contains our conclusions. 
the solution is extrapolated to the eighth order. The method is fully 
parallelized. The largest molecule treated is CuH. 0 1992 Academc 

Press, Inc. II. A PROCEDURE TO SOLVE THE HARTREE-FOCK 
EQUATIONS IN OPERATOR FORM 

I. INTRODUCTION 
Consider a closed-shell diatomic molecule with nuclei 

To solve the Hartree-Fock equations for molecules, basis of charges Z, and Z, separated by the distance R and 
set methods have been the only methods able to solve the containing 2N electrons in N doubly occupied orbitals. 
problem in a reasonable time. However, if highly accurate The ith orbital q,(r) with orbital energy si satisfies the 
solutions are needed, it may be difficult to improve the basis (RHF) equation, 
set results, because the convergence to the exact result is 
slow and may be nonuniform. Numerical methods avoid the ~~i(r)=Ei(P;(r), 

inherent limitations of expansion approaches. Using this 
technique it is possible to increase the accuracy of a calcula- where 
tion in a systematic fashion and to realistically predict its 
error. 

Numerical 1D methods have been used for atoms and Frpi(r)= 

diatomic molecules. The first numerical 2D calculations 
[ 

-iV2-2-% q,(r) 1 
on diatomics were carried out by Becke [ 1 ] in the 
Hartree-Fock-Slater or X, approximation, using the varia- + f [Z,A~~ j 

j= 1 
j&q (pi* W cpi(r') dr’ 

tional form. Then, Laaksonen et al. [2] obtained the first 
numerical 2D solutions of the Hartree-Fock equations in 
operator form, using the successive overrelaxation (SOR) 

-Vjlr) j& rp,f“ (r’) cp,(r’) dr’ . 1 
method. This latter approach will here be developed further. 

Multigrid algorithms and Krylov subspace methods This is an integro-differential equation, which can be 
(conjugate gradient, conjugate residual, . ..) with appro- formulated as a set of differential equations. 
priate preconditioning are both efficient tools for the The SCF (self-consistent field) process to numerically 
solution of equations which arise from the discretization of solve the Hartree-Fock equation iteratively can be 
partial differential equations. We have used a combination described as a generalized inverse iteration. In each iteration 
of both methods in order to solve numerically the restricted of the SCF process, two sets of equations have to be solved: 
Hartree-Fock (RHF) equations for diatomics in a First, for i= 1, . . . . N and j= 1, . . . . i solve the Poisson 
reasonable time. equation for the potentials VI’ 

In Section II an iterative procedure is presented to solve 
the implicit RHF equations. The coordinate system and dis- -V2v/ji(r) = 47zcpj(r) q,(r). (1) 
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Next for i = 1, ..,, N calculate the orbital energy through 
the Rayleigh quotient, 

Ei= (Cpi IpI Vi> 

<cpiIcp,) ’ 

where k=is the Fock operator, and solve the linear equation, 

(2) 
j=l 
i#i 

which is the Hartree-Fock equation for the ith orbital. 
Then orthonormalize (pi against ‘pi, . . . . cpiP,. 

In order to improve the SCF convergence the following 
procedure is adopted. Once an orbital has been corrected it 
is orthonormalized and damped between consecutive 
iterates by 

cp ~+L@‘Pi+l+(l-@)cp’, 

where 0 < c1< 1, and orthonormalized again. An alternative 
way is to perform the damping after all orbitals have been 
corrected and orthonormalized, but it has turned out to 
work less satisfactorily. 

After all orbitals have been improved the Ritz projection 
process [3] for simultaneous computation of several eigen- 
values and their eigenvectors is performed. That is, a unitary 
transformation which diagonalizes the matrix representa- 
tion of the Fock operator in the subspace spanned by the 
orthonormalized orbitals is performed. 

In the quadratic region it is possible to accelerate the con- 
vergence of the SCF process to the final solution by using 
the DIIS (direct inversion in the iterative subspace) method 
[4]. It uses the fact that a much better approximation to the 
final solution, in an iterative process, can be constructed 
from the first m iterated vectors vl, ,.., vm as 

m 
v= c CiVi 

i=l 

by requiring that the residuum vector 

Av= f c;Av’ 
i=l 

approximates the zero vector in the mean square sense, and 
the condition 

holds. In this case v contains the orbitals. Note that for 
a DIIS(m) step, m differences, i.e., m + 1 vectors, are 
necessary. After a DIIS step the orbitals are reorthonor- 
malized. 

III. COORDINATE SYSTEM 
AND DISCRETIZATION 

A natural coordinate system for diatomic molecules is the 
prolate spheroidal coordinates, used in both Refs. [ 1, 21, 
which have axial symmetry and where the coordinate 
origins coincide with the positions of the nuclei. This coor- 
dinate system is defined by 

x = a sinh p sin v cos $J 

y = a sinh p sin v sin I$ 

z = a cash p cos v, 

where a = R/2 and 

o<p<cc 

o<v<7c 

Odfpd27L 

Using a constant step size for the prolate spheroidal coor- 
dinates gives a reasonably well-scaled grid for a diatomic 
wave function. 

In prolate spheroidal coordinates, both Eq. (1) for the 
potentials and Eq. (2) for the orbitals can formally be 
written 

(-++coth&-cotva,+f)u=g (3) 

which is the linear 2D differential equation we have to solve. 
The boundary conditions are given by symmetry conditions 
at the molecular axis and asymptotic expressions at a 
practical infinity. 

The continuous Eq. (3) is discretized using central finite 
differences of order 0(/z’), where I is either 2, 4, or 6, see 
Refs. [2, 51. The coefficient matrix of the second-order 
discretization is a tridiagonal block matrix. The diagonal 
blocks are themselves tridiagonal submatrices and the sub- 
and super-diagonal blocks are diagonal submatrices. Thus, 
for the fourth- or sixth-order discretizations the three 
diagonals are augmented to live or seven diagonals in the 
matrix and submatrices. Moreover, the matrix is unsym- 
metric, because of the first derivatives, and depending onf, 
positive definite for Eq. (1) and indefinite for Eq. (2). 

IV. LINEAR EQUATION SOLVER 

The efficiency of the multigrid method for the solution of 
the discretized time-independent Schrbdinger equation has 
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been demonstrated [6] for a two-dimensional model 
problem which includes the essential features present in 
actual scattering problems. In Ref. [6] Gauss-Seidel relaxa- 
tion was used as a smoother in an accommodative multigrid 
algorithm, with a direct solver on the coarsest grid. The 
direct solver was used in order to circumvent the difficulties 
associated with the fact that the Schrodinger differential 
operator is not positive definite. This approach did in 
most cases not work satisfactorily for the Hartree-Fock 
equations, because of nearness to singularity, that is, the 
existence of nearly zero eigenvalues for the resulting matrix 
to Eq. (2). A more robust method is presented below. 

The multigrid method makes use of a sequence of subse- 
quently coarsened meshes, where the coarsest mesh has to 
be line enough to give a qualitative idea of the eigensolu- 
tions, while the final accuracy is determined by the finest 
mesh. These meshes are connected by restriction (line-to- 
coarse transfer) and interpolation (coarse-to-line transfer). 
Full weighting has been used as restriction and as inter- 
polation the usual linear interpolation. When choosing a 
suitable smoother two problems have to be considered. 

First, for indefinite problems, mode analysis shows [6] 
that the Gauss-Seidel relaxation is suitable if line enough 
grids are considered. Smooth components may diverge on 
such grids, but slowly enough to be handled by the coarse- 
grid correction. On coarser grids, however, the divergence 
of smooth components in the Gauss-Seidel relaxation is 
faster; hence another relaxation scheme is needed. 

Second, as was shown in Ref. [ 131, different singular 
behavior on different grids, causes large interpolation 
errors. This problem is more severe on the coarser grids and 
one may therefore to some extent avoid this problem by 
using only a few grids. This means that the coarsest grid 
may be too large to be efficiently solved by a direct method 
and, instead a Krylov subspace method [7, 81, the 
Orthomin algorithm is chosen for this purpose with 
Gauss-Seidel relaxation as preconditioner. The use of the 
Orthomin method will not only provide the smoothing but 
at the same time improve the coarse-grid correction. As a 
result the multigrid cycle will work satisfactorily also with 
few grids. Furthermore, Orthomin will offset to some extent 
the shortcomings of the basic smoother for the case of 
highly nonuniform meshes. 

When the matrix is indefinite or unsymmetric, symmetric 
preconditioning is needed. The symmetrically precondi- 
tioned version of Orthomin(m), to solve the linear equation 
Ax = h, is 

Choose x0 
Set r,=b-Ax, 

?,=M-‘r, 

PO=?, 

Start iterate 

qk=MIApk 

Mk= <qk, Fk)/<qkr qk) 

(@k= CAP,> Fk)/(Apk> qk)) 

xk+,=xk+crkPk 

rk+,=v”k-akqk 

Ok=itC-‘A?k+, 

pi= (Ok, qi)/<qi, qi> 

(pi= (AT”k+l, 4; >l<APi, q,)), i= 1, . . . . m 

m 

Pk+lzFk+l- 1 PiPi 
i=l 

AP k+, =AFk+,- m J, B&i, 

where M-’ is an approximative inverse to A, r” is a 
generalized residual equal to M - ‘r, and p is the direction of 
search. For the special case m = 0, Orthomin is identical to 
the minimal residual method and, for the case m = 1, 
Orthomin is equivalent to the conjugate residual method, 
when A is symmetric and positive definite. 

Inside the parentheses, for comparison, we also give 
the simpler unsymmetric preconditioning which can be 
used when the matrix is positive definite and symmetric. 
If the matrix is indefinite a simple remedy is to add 
crZ to the original matrix, where CI is a scalar such that 
A + crZ is positive real, and use as preconditioning the 
preconditioning associated with A + al. This can be 
effective in case G( is not too large, see Ref. [lo]. 

For the algorithm to work properly when the matrix is 
unsymmetric, a list of previous search directions must be 
kept. The length of the list depends on how large the asym- 
metric part of the matrix is. For this reason Orthomin(m) 
with m search directions is used on the coarsest grid, 
because here it is important for the solution to be con- 
verged, not only smoothed as on other grids. On the other 
coarser grids only a few iterations are needed and therefore 
Orthomin( 1) works well. 

When the number of iterations gets larger than m, the 
search direction corresponding to the smallest p relative to 
the norm of its associated vector is discarded. This is a much 
better policy than to use a first-in first-out policy, see [9] for 
a detailed discussion. 

Let one work unit (WV) be equal to one relaxation on 
the finest grid. The work needed to form the vector Ax or to 
relax the equation Ax = b is of equal size; therefore the main 
work for N iterations of the symmetric preconditioned 
Orthomin( 1) on the finest grid is 3N + 1 WU. The unsym- 
metric preconditioning is less expensive to use, but often 
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two relaxation sweeps is necessary in the preconditioning 
step to achieve a convergence rate similar to that obtained 
with the symmetrical preconditioning, which gives 
3N+3 wu. 

In conclusion, if instead of performing v relaxations in a 
multigrid cycle, we perform v iterations of the precondi- 
tioned Orthomin with relaxation as preconditioning, then 
on the finest grid this will be too expensive to use, but on 
coarser grids we can afford it; therefore if work is con- 
sidered, this method is better to use only on coarser grids. A 
V-cycle is a fixed multigrid algorithm. Let V(v,, v2) be a 
V-cycle where v1 is the number of relaxations or iterations 
before restriction and v2 the number of relaxations or itera- 
tions after the coarse grid correction. The multigrid cycle 
used here on both Eqs. (1) and (2), is a V(2, 3) cycle, with 
Gauss-Seidel relaxation on the finest grid and Orthomin( 1) 
on the coarser grids, except for the coarsest grid where 
Orthomin(20) is used. The work needed to perform one 
V(2, 3) cycle, if restriction is excluded, is approximately 
11 wu. 

Line relaxation is well suited for Eq. ( 1) for the potentials, 
because only the right-hand side of the equation changes 
between iterations, If banded LU factorization is performed 
in the first iteration and the LU decomposition is saved, 
then only forward and back substitution are needed to 
perform the relaxation in the following iterations. 

The calculations were carried out on an Alliant FX-80/6 
with more than one processor. By using zebra line relaxa- 
tion, which implies that line relaxation is performed on two 
separate sets (colors), odd lines and even lines where 
the lines in each set are decoupled, for the second-order 
approximation and more colors for the higher order 
approximations for both Eqs. (1) and (2), the computations 
can be done in parallel. 

A useful approximation to A ~’ can be found, if the ILU 
(incomplete LU) factorization or the modified ILU 
factorization, which especially improves the low-frequency 
approximation, is used instead of relaxation. The block ver- 
sions seem to be more efficient than the point versions, see, 
for example, [ 111. Recently a block preconditioned con- 
jugate gradient method [12] up to sixth order has been 
used to solve the Poisson equation in prolate spheroidal 
coordinates. 

V. COMPUTATIONAL DETAILS AND RESULTS 

Starting orbitals are taken from a basis set calculation. In 
the first iteration the potentials are initialized by a full multi- 
grid cycle and thereafter as many multigrid cycles are per- 
formed as is necessary to make the norm of the residual for 
Eq. (1) smaller than a prescribed value. This value depends 
on the norm of the residuals in Eq. (2) for the orbitals 
involved in solving Eq. (1). In practice one multigrid cycle 

TABLE I 

Total and Orbital Energies (Hartree) for BH 

Property BH (X’Z+) 
R(bohr) 2.336 

Grid (193, 129) (97,65) (97,651 
ET -25.131598(9)70” -25.131613” -25.131609” 

4lu) -7.686267(47)382 - 7.686273 - 7.686271 

42~) -0.6481872(8)7 -0.648188 -0.648188 

s(3c) -0.3484237(9)8 -0.348424 - 0.348424 

Note. For the largest grid the last figures for the sixth order values are 
given in parenthesis and the last extrapolated figures are given after the 
parenthesis. 

a Present work. 
h See Ref. [Z]. 

is enough for each potential. The equations for the orbitals 
are solved by using one multigrid cycle for each orbital. 

The calculations presented here were carried out with 
sixth-order approximations, except in the first iteration for 
the potentials, where starting potentials were calculated 
with second-order approximations. The size of the grid was 
chosen to be (n,, n,) = (193, 129) and p-line relaxation was 
used. The number of grids used in the multigrid cycle 
was live, except three grids for the valence orbitals, to avoid 
the large interpolation errors associated with different 
singular behavior on different grids. 

The damping factor for the orbitals was held constant 
during the SCF iterations. The SCF iterations were finished 

TABLE II 

Total and Orbital Energies (Hartree) for HF and CO 

Property HF (X’Z:‘) 
R(bohr) 1.7328 

Grid (193,129) (193, 129) 

ET - 100.07080(4)24” - 100.0708046 

4lu) -26.29456(65)585 - 26.2945664 

07) - 1.600985(13)07 - 1.60098512 

s(3c) -0.7682476(5)0 - 0.76824766 

41X) -0.650393(60)55 -0.65039358 

Property co (X’Z’ ) 
R(bohr) 2.132 

Grid (193, 129) (113,81) 

ET - 112.79090(9)71” - 112.79095’ 

E(lU) -20.664521(8)26 - 20.664531 
42u) - 11.360051(5)33 - 11.360055 

s(3c) - 1.521489(91)84 - 1.521491 

a(4c) -0.804529(84)79 -0.804531 

s(5c) -0.554923(43)38 -0.554925 

4ln) -0.640360(60)55 - 0.640362 

a Present work. 
h Unpublished results from private communication with Dage 

Sundholm. 
c See Ref. [Z]. 
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TABLE III TABLE V 

Total and Orbital Energies (Hartree) for CuH Spectroscopic Constants 

Property 
R(bohr) 

Grid 

El 
dlo) 
e-7) 
E(30) 
E(4g) 
E(5g) 
46~) 
E(7U) 
Gin) 
427[) 
a(3n) 
E( 1s) 

CuH (X’C’) 
2.764 

(193, 129) 
- 1639.51(6)42” - 1639.5128* 

-328.80(94)877 - 328.8090 
-40.8398(8)21 -40.8394 
-35.6372(7)06 -35.6368 

-5.0298(6)49 - 5.0289 
-3.3438(6)52 - 3.3429 
-0.5168(34)27 -0.5159 
-0.33702(5)0 -0.3362 

-35.6383(8)4 -35.6380 
-3.3391(27)18 -3.3382 
-0.50777(8)3 -0.5069 
-0.5056(23)17 -0.5047 

BH HF co CuH 

r,(bohr) 2.3052 1.6951 2.0820 2.98 

D&v) 2.79285 4.4067 8.0187 1.82 
o,(cm-r) 2494 4479 2430 1750 

results from a large basis set calculation are given. An error 
of about 1.4 mhartree in the total energy for the basis set 
seems reasonable, when the same basis set on the Cu atom 
gives a total energy of - 1638.9629, which is in error by 
0.8 mhartree compared with the exact RHF energy 
- 1638.9637 [ 141. 

Note. The copper (2Os, 12p, 9d) primitive set of Ref. 1161 was 
extended to (203, 15p, lOd, 6S, 4g) and contracted to (7s, 6p, 4d, 2h lg) 
using an AN0 contraction [17]. The hydrogen (83, 6p, 4d)/(4s, 3p, 2d) 
AN0 basis was taken from [17]. 

0 Present work. 
* Unpublished basis set calculation made by Lars Pettersson. 

when a DIIS(4) step gave no improvement. After having 
calculated a solution to the coarser grid (97, 65), a 
Richardson extrapolation was performed. Depending on 
the method used to converge the solution, there could be an 
iteration error in the last figure shown for the valence 
orbitals. 

In addition, a calculation was made on the Zn atom, to 
test the accuracy of the extrapolated solution against atomic 
1D numerical calculations. The results in Table IV shows an 
error of 0.7 mhartree for the total energy while the errors in 
the orbital energies are in the last figure shown. 

The main source of the error comes from the orbital with 
lowest energy, which gives a larger error for Zn than 
for CuH. 

Results for the diatomic molecules BH, HF, CO, and 
CuH at the experimental bond length, are shown in 
Tables I, II, and III. For comparison, results from numeri- 
cal RHF calculations by Laaksonen et al. [2] are also given 
for BH, HF, and CO. When the same gridsize is used, both 
methods yield nearly identical results. For CuH, also, 

TABLE IV 

The computed equilibrium bond length rer the dissocia- 
tion energy D,, and the harmonic frequency w, are given for 
BH, HF, CO, and CuH in Table V. The spectroscopic 
parameters were computed by cubic interpolation in r. For 
CuH the extrapolated values were used, but to give a 
reliable w,, higher numerical accuracy is needed. 

Data about the calculations, with three processors in the 
cluster, are given in Table VI. The computational time 
behavs like O(N), where N is the number of unknowns. This 
is what could be expected for this kind of problem with a 
multigrid method [7]. However, if a small damping factor 
is needed to obtain convergence, the computational time is 
increased. 

Total and Orbital Energies (Hartree) for the Zn Atom 

Property 
R(bohr) 

Grid 

ET 
dlu) 
420) 
E(30) 
c(4u) 
E(5U) 
d6a) 
a(70) 
E(ln) 
d2n) 
a(3n) 
E(lS) 

Zn (‘S) 

(19:;:29) 
- 1777.8(51)488” -1777.8481b 

-353.30(56)47 -353.304545 
-44.361(81)74 -44.361726 
-38.924(93)86 - 38.9248455 

-5.6378(33)19 - 5.637821 
-3.8393(89)77 -3.83937905 
-0.7825(45)39 -0.78254215 
-0.2925( 11)08 -0.29250705 

- 38.9248(8)5 - 38.9248455 
-3.8393(83)76 -3.83937905 
-0.7825(43)39 -0.78254215 
-0.7825(43)39 -0.78254215 

The computational times for using one, two, or three pro- 
cessors for HF were 6663 s, 3334 s, and 2573 s, respectively. 
As a result, the computational time was reduced with a fac- 
tor of 0.5 or 0.39 with two or three processors, respectively. 

Finally, the residual history for the orbitals in the HF 

TABLE VI 

Computational Details 

BH HF CO CuH Zn 

” Present work. 
‘See Ref. 1151. 

Number of orbitals 3 4 6 11 11 
Number of potentials 6 11 22 76 76 
Damping factor 0.54 0.54 0.4 0.3 0.3 
Number of iterations 18 18 25 35 30 
Computational time (h) 0.4 0.7 1.9 6.5 5.5 
Comp. time (ms) per unknown 7.1 6.9 9.6 10.8 9.1 
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TABLE VII 

Residual History for the Orbitals in the HF Molecule 

Orbital 
SCF iteration 1U 20 30 In 

1 5.3 (0.014) 1.8 (0.020) 1.9 (0.043) 1.1 (0.037) 
2 2.4 (0.014) 8.5-l(O.021) 8.5-l(O.042) 5.2-l(O.037) 
3 1.1 (0.014) 3.6l(O.021) 4&1(0.042) 2.5-l(O.037) 
4 5.3-l(O.015) 1.9-l(O.021) 1.9-l(O.041) 1.2-l(O.038) 
5 2.5-l(O.015) 8.9%2(0.022) 9.1-2(0.042) 5.6-2(0.038) 
6 2.G2(0.016) 7.6-3(0.019) 9.2-3(0.059) 2.6-3(0.036) 
7 1.2-2(0.016) 3.7-3(0.020) 4.3-3(0.059) l.l-3(0.033) 
8 5.63(0.016) 1.8-3(0.021) 5&3(0.145) 5.5-4(0.035) 
9 2.&3(0.016) 8.3+0.021) 2.8-3(0.156) 2.7-4(0.036) 

10 1.2-3(0.016) 4.3-3(0.023) 1.3-3(0.143) l.ti(O.039) 
11 l/&3(0.016) 4.+4(0.019) 3.&4(0.038) 1.2+0.033) 
12 6.74(0.016) 2.14(0.020) l&4(0.043) 6.2-5(0.034) 
13 3.1-2(0.016) 9.8-5(0.020) 8.&5(0.046) 2.9-5(0.035) 
14 l&4(0.016) 4.7-5(0.021) 3.8-5(0.045) l/l-5(0.036) 
15 6.8-5(0.016) 2.2-5(0.021) 2X&5(0.052) 6.9-6(0.038) 
16 2.2-5(0.015) 6.5-6(0.017) 9.46(0.070) 2.2-6(0.033) 
17 l&5(0.015) 3&6(0.018) 3.1-6(0.047) 9X&7(0.032) 
18 4.8-6(0.015) 1.4-6(0.018) 1.8&6(0.058) 5.G7(0.035) 

Note. The multigrid cycle reduction of the residuals in each iteration 
are given inside the parenthesis. The short notation -n = lo-” is used for 
the residuals. 

molecule is shown in Table VII. Especially for the 30 
valence orbital, the reduction of the residual depends on the 
DIIS method. 

VI. CONCLUSIONS 

The multigrid cycle, with Gauss-Seidel relaxation on the 
finest grid and the Orthomin method on the coarser grids 
with Gauss-Seidel relaxation as preconditioner, used as a 
linear equation solver in a generalized inverse iteration, has 
been shown to be very efficient to solve numerically the 
restricted Hartree-Fock (RHF) equations for diatomic 

molecules. The numerical results presented in this work are 
in good agreement with results given in the literature. 
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